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Chapter 1. Introduction

SystemTap is a tracing and probing tool that allows users to study and monitor the activities of the
operating system (particularly, the kernel) in fine detail. It provides information similar to the output of
tools like netstat, ps, top, and iostat; however, SystemTap is designed to provide more filtering
and analysis options for collected information.

1.1. Documentat ion Goals

SystemTap provides the infrastructure to monitor the running Linux system for detailed analysis. This
can assist administrators and developers in identifying the underlying cause of a bug or
performance problem.

Without SystemTap, monitoring the activity of a running kernel would require a tedious instrument,
recompile, install, and reboot sequence. SystemTap is designed to eliminate this, allowing users to
gather the same information by simply running user-written SystemTap scripts.

However, SystemTap was initially designed for users with intermediate to advanced knowledge of the
kernel. This makes SystemTap less useful to administrators or developers with limited knowledge of
and experience with the Linux kernel. Moreover, much of the existing SystemTap documentation is
similarly aimed at knowledgeable and experienced users. This makes learning the tool similarly
difficult.

To lower these barriers the SystemTap Beginners Guide was written with the following goals:

To introduce users to SystemTap, familiarize them with its architecture, and provide setup
instructions for all kernel types.

To provide pre-written SystemTap scripts for monitoring detailed activity in different components
of the system, along with instructions on how to run them and analyze their output.

1.2. SystemTap Capabilit ies

Flexibility: SystemTap's framework allows users to develop simple scripts for investigating and
monitoring a wide variety of kernel functions, system calls, and other events that occur in kernel-
space. With this, SystemTap is not so much a tool as it is a system that allows you to develop your
own kernel-specific forensic and monitoring tools.

Ease-Of-Use: as mentioned earlier, SystemTap allows users to probe kernel-space events without
having to resort to the lengthy instrument, recompile, install, and reboot the kernel process.

Most of the SystemTap scripts enumerated in Chapter 4, Useful SystemTap Scripts demonstrate system
forensics and monitoring capabilities not natively available with other similar tools (such as top, 
oprofile, or ps). These scripts are provided to give readers extensive examples of the application
of SystemTap, which in turn will educate them further on the capabilities they can employ when
writing their own SystemTap scripts.
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Chapter 2. Using SystemTap

This chapter instructs users how to install SystemTap, and provides an introduction on how to run
SystemTap scripts.

2.1. Installat ion and Setup

To deploy SystemTap, SystemTap packages along with the corresponding set of -devel , -
debuginfo  and -debuginfo-common-arch packages for the kernel need to be installed. To use
SystemTap on more than one kernel where a system has multiple kernels installed, install the -
devel  and -debuginfo  packages for each of those kernel versions.

These procedures will be discussed in detail in the following sections.

Important

Many users confuse -debuginfo  with -debug . Remember that the deployment of SystemTap
requires the installation of the -debuginfo  package of the kernel, not the -debug  version of
the kernel.

2.1.1. Installing SystemT ap

To deploy SystemTap, install the following RPMs:

systemtap

systemtap-runtime

Assuming that yum is installed in the system, these two rpms can be installed with yum install 
systemtap systemtap-runtime. Install the required kernel information RPMs before using
SystemTap.

2.1.2. Installing Required Kernel Informat ion RPMs

SystemTap needs information about the kernel in order to place instrumentation in it (i.e. probe it).
This information, which allows SystemTap to generate the code for the instrumentation, is contained
in the matching -devel , -debuginfo , and -debuginfo-common-arch packages for the kernel.
The necessary -devel  and -debuginfo  packages for the ordinary "vanilla"  kernel are as follows:

kernel-debuginfo

kernel-debuginfo-common-arch

kernel-devel

Likewise, the necessary packages for the PAE kernel would be kernel-PAE-debuginfo , kernel-
PAE-debuginfo-common-arch ,and kernel-PAE-devel .

To determine what kernel your system is currently using, use:

uname -r

⁠Chapt er 2 . Using Syst emT ap
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For example, if you wish to use SystemTap on kernel version 2.6.32-53.el6  on an i686 machine,
then you would need to download and install the following RPMs:

kernel-debuginfo-2.6.32-53.el6.i686.rpm

kernel-debuginfo-common-i686-2.6.32-53.el6.i686.rpm

kernel-devel-2.6.32-53.el6.i686.rpm

Important

The version, variant, and architecture of the -devel , -debuginfo  and -debuginfo-
common-arch  packages must match the kernel to be probed with SystemTap exactly.

To obtain a list of the channels SystemTap needs on the system, use the following script:

#! /bin/bash
pkg=`rpm -q --whatprovides "redhat-release"`
releasever=`rpm -q --qf "%{version}" $pkg`
variant=`echo $releasever | tr -d "[:digit:]" | tr "[:upper:]" "
[:lower:]" `
if test -z "$variant"; then
  echo "No Red Hat Enterprise Linux variant (workstation/client/server) 
found."
  exit 1
fi
version=`echo $releasever | tr -cd "[:digit:]"`
base=`uname -i`
echo "rhel-$base-$variant-$version"
echo "rhel-$base-$variant-$version-debuginfo"
echo "rhel-$base-$variant-optional-$version-debuginfo"
echo "rhel-$base-$variant-optional-$version"

After the channels have been added, install the required -devel , debuginfo , and debuginfo-
install arch packages for the kernel using the command debuginfo-install 
kernelname-version. Replace kernelname with the appropriate kernel variant name (for
example, kernel-PAE), and version with the target kernel's version. For example, to install the
required kernel information packages for the kernel-PAE-2.6.32-53.el6  kernel, run: 
debuginfo-install kernel-PAE-2.6.32-53.el6

2.1.3. Init ial T est ing

If the kernel to be probed with SystemTap is currently being used, it is possible to immediately test
whether the deployment was successful. If a different kernel is to be probed, reboot and load the
appropriate kernel.

To start the test, run the command stap -v -e 'probe vfs.read {printf("read 
performed\n"); exit()}' . This command simply instructs SystemTap to print read 
performed  then exit properly once a virtual file system read is detected. If the SystemTap
deployment was successful, you should get output similar to the following:

Pass 1: parsed user script and 45 library script(s) in 340usr/0sys/358real 
ms.
Pass 2: analyzed script: 1 probe(s), 1 function(s), 0 embed(s), 0 
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global(s) in 290usr/260sys/568real ms.
Pass 3: translated to C into 
"/tmp/stapiArgLX/stap_e5886fa50499994e6a87aacdc43cd392_399.c" in 
490usr/430sys/938real ms.
Pass 4: compiled C into "stap_e5886fa50499994e6a87aacdc43cd392_399.ko" in 
3310usr/430sys/3714real ms.
Pass 5: starting run.
read performed
Pass 5: run completed in 10usr/40sys/73real ms.

The last three lines of the output (i.e. beginning with Pass 5) indicate that SystemTap was able to
successfully create the instrumentation to probe the kernel, run the instrumentation, detect the event
being probed (in this case, a virtual file system read), and execute a valid handler (print text then
close it with no errors).

2.2. Generat ing Inst rumentat ion for Other Computers

When users run a SystemTap script, a kernel module is built out of that script. SystemTap then loads
the module into the kernel, allowing it to extract the specified data directly from the kernel (refer to
Procedure 3.1, “SystemTap Session”  in Section 3.1, “Architecture”  for more information).

Normally, SystemTap scripts can only be run on systems where SystemTap is deployed (as in
Section 2.1, “ Installation and Setup” ). This could mean that to run SystemTap on ten systems,
SystemTap needs to be deployed on all those systems. In some cases, this may be neither feasible
nor desired. For instance, corporate policy may prohibit an administrator from installing RPMs that
provide compilers or debug information on specific machines, which will prevent the deployment of
SystemTap.

To work around this, use cross-instrumentation. Cross-instrumentation is the process of generating
SystemTap instrumentation modules from a SystemTap script on one computer to be used on
another computer. This process offers the following benefits:

The kernel information packages for various machines can be installed on a single host machine.

Each target machine only needs one RPM to be installed to use the generated SystemTap
instrumentation module: systemtap-runtime.

Note

For the sake of simplicity, the following terms will be used throughout this section:

 instrumentation module — the kernel module built from a SystemTap script; i.e. the
SystemTap module is built on the host system, and will be loaded on the target kernel of target
system.
 host system — the system on which the instrumentation modules (from SystemTap scripts)
are compiled, to be loaded on target systems.
 target system — the system in which the instrumentation module is being built (from
SystemTap scripts).
 target kernel — the kernel of the target system. This is the kernel which loads/runs the
instrumentation module.

Procedure 2.1. Conf iguring a Host  System and Target  Systems

⁠Chapt er 2 . Using Syst emT ap
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1. Install the systemtap-runtime RPM on each target system.

2. Determine the kernel running on each target system by running uname -r on each target
system.

3. Install SystemTap on the host system. The instrumentation module will be built for the target
systems on the host system. For instructions on how to install SystemTap, refer to
Section 2.1.1, “ Installing SystemTap” .

4. Using the target kernel version determined earlier, install the target kernel and related RPMs on
the host system by the method described in Section 2.1.2, “ Installing Required Kernel
Information RPMs” . If multiple target systems use different target kernels, repeat this step for
each different kernel used on the target systems.

After performing Procedure 2.1, “Configuring a Host System and Target Systems” , the instrumentation
module (for any target system) can now be built on the host system.

To build the instrumentation module, run the following command on the host system (be sure to specify
the appropriate values):

stap -r kernel_version script -m module_name -p4

Here, kernel_version refers to the version of the target kernel (the output of uname -r on the target
machine), script refers to the script to be converted into an instrumentation module, and 
module_name is the desired name of the instrumentation module.

Note

To determine the architecture notation of a running kernel, run uname -m.

Once the instrumentation module is compiled, copy it to the target system and then load it using:

staprun module_name.ko

For example, to create the instrumentation module simple.ko  from a SystemTap script named 
simple.stp for the target kernel 2.6.32-53.el6, use the following command:

stap -r 2.6.32-53.el6 -e 'probe vfs.read {exit()}' -m simple -p4

This will create a module named simple.ko . To use the instrumentation module simple.ko , copy it
to the target system and run the following command (on the target system):

staprun simple.ko

Important

The host system must be the same architecture and running the same distribution of Linux as
the target system in order for the built instrumentation module to work.

2.3. Running SystemTap Scripts

Syst emT ap Beginners Guide
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SystemTap scripts are run through the command stap. stap can run SystemTap scripts from
standard input or from file.

Running stap and staprun requires elevated privileges to the system. However, not all users can be
granted root access just to run SystemTap. In some cases, for instance, a non-privileged user may
need to to run SystemTap instrumentation on their machine.

To allow ordinary users to run SystemTap without root access, add them to both of these user
groups:

stapdev

Members of this group can use stap to run SystemTap scripts, or staprun to run
SystemTap instrumentation modules.

Running stap involves compiling SystemTap scripts into kernel modules and loading them
into the kernel. This requires elevated privileges to the system, which are granted to 
stapdev members. Unfortunately, such privileges also grant effective root access to 
stapdev members. As such, only grant stapdev group membership to users who can be
trusted with root access.

stapusr

Members of this group can only use staprun to run SystemTap instrumentation modules.
In addition, they can only run those modules from 
/lib/modules/kernel_version/systemtap/. Note that this directory must be owned
only by the root user, and must only be writable by the root user.

Note

In order to run SystemTap scripts a user must be in both the stapdev and stapusr groups.

Below is a list of commonly used stap options:

-v

Makes the output of the SystemTap session more verbose. This option (for example, stap 
-vvv script.stp) can be repeated to provide more details on the script's execution. It is
particularly useful if errors are encountered when running the script. This option is
particularly useful if you encounter any errors in running the script.

For more information about common SystemTap script errors, refer to Chapter 5,
Understanding SystemTap Errors.

-o  filename

Sends the standard output to file (filename).

-S size,count

Limit files to size megabytes and limit the number of files kept around to count. The file
names will have a sequence number suffix. This option implements logrotate operations for
SystemTap.

When used with -o , the -S will limit the size of log files.

-x process ID

Sets the SystemTap handler function target() to the specified process ID. For more
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Sets the SystemTap handler function target() to the specified process ID. For more
information about target(), refer to SystemTap Functions.

-c command

Sets the SystemTap handler function target() to the specified command. The full path to
the specified command must be used; for example, instead of specifying cp, use /bin/cp
(as in stap script -c /bin/cp). For more information about target(), refer to
SystemTap Functions.

-e 'script'

Use script string rather than a file as input for systemtap translator.

-F

Use SystemTap's Flight recorder mode and make the script a background process. For
more information about flight recorder mode, refer to Section 2.3.1, “SystemTap Flight
Recorder Mode” .

stap can also be instructed to run scripts from standard input using the switch -. To illustrate:

Example 2.1. Running Scripts From Standard Input

echo "probe timer.s(1) {exit()}" | stap -

Example 2.1, “Running Scripts From Standard Input”  instructs stap to run the script passed by 
echo  to standard input. Any stap options to be used should be inserted before the - switch; for
instance, to make the example in Example 2.1, “Running Scripts From Standard Input”  more verbose,
the command would be:

echo "probe timer.s(1) {exit()}" | stap -v -

For more information about stap, refer to man stap.

To run SystemTap instrumentation (i.e. the kernel module built from SystemTap scripts during a
cross-instrumentation), use staprun instead. For more information about staprun and cross-
instrumentation, refer to Section 2.2, “Generating Instrumentation for Other Computers” .

Note

The stap options -v and -o  also work for staprun. For more information about staprun,
refer to man staprun.

2.3.1. SystemT ap Flight  Recorder Mode

SystemTap's flight recorder mode allows a SystemTap script to be ran for long periods and just
focus on recent output. The flight recorder mode (the -F option) limits the amount of output
generated. There are two variations of the flight recorder mode: in-memory and file mode. In both
cases the SystemTap script runs as a background process.

2.3.1 .1 . In-memo ry Flight  Reco rder
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When flight recorder mode (the -F option) is used without a file name, SystemTap uses a buffer in
kernel memory to store the output of the script. Next, SystemTap instrumentation module loads and
the probes start running, then instrumentation will detatch and be put in the background. When the
interesting event occurs, the instrumentation can be reattached and the recent output in the memory
buffer and any continuing output can be seen. The following command starts a script using the flight
recorder in-memory mode:

stap -F /usr/share/doc/systemtap-version/examples/io/iotime.stp

Once the script starts, a message that provides the command to reconnect to the running script will
appear:

Disconnecting from systemtap module.
To reconnect, type "staprun -A 
stap_5dd0073edcb1f13f7565d8c343063e68_19556"

When the interesting event occurs, reattach to the currently running script and output the recent data
in the memory buffer, then get the continuing output with the following command:

staprun -A stap_5dd0073edcb1f13f7565d8c343063e68_19556

By default, the kernel buffer is 1MB in size, but it can be increased with the -s option specifying the
size in megabytes (rounded up to the next power over 2) for the buffer. For example -s2 on the
SystemTap command line would specify 2MB for the buffer.

2.3.1 .2 . File  Flight  Reco rder

The flight recorder mode can also store data to files. The number and size of the files kept is
controlled by the -S option followed by two numerical arguments separated by a comma. The first
argument is the maximum size in megabytes for the each output file. The second argument is the
number of recent files to keep. The file name is specified by the -o  option followed by the name.
SystemTap adds a number suffix to the file name to indicate the order of the files. The following will
start SystemTap in file flight recorder mode with the output going to files named 
/tmp/pfaults.log. [0-9]+ with each file 1MB or smaller and keeping latest two files:

stap -F -o /tmp/pfaults.log -S 1,2  pfaults.stp

The number printed by the command is the process ID. Sending a SIGTERM to the process will
shutdown the SystemTap script and stop the data collection. For example if the previous command
listed the 7590 as the process ID, the following command whould shutdown the systemtap script:

kill -s SIGTERM 7590

Only the most recent two file generated by the script are kept and the older files are been removed.
Thus, ls -sh /tmp/pfaults.log.* shows the only two files:

1020K /tmp/pfaults.log.5    44K /tmp/pfaults.log.6

One can look at the highest number file for the latest data, in this case /tmp/pfaults.log.6.

⁠Chapt er 2 . Using Syst emT ap
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Chapter 3. Understanding How SystemTap Works

SystemTap allows users to write and reuse simple scripts to deeply examine the activities of a
running Linux system. These scripts can be designed to extract data, filter it, and summarize it
quickly (and safely), enabling the diagnosis of complex performance (or even functional) problems.

The essential idea behind a SystemTap script is to name events, and to give them handlers. When
SystemTap runs the script, SystemTap monitors for the event; once the event occurs, the Linux kernel
then runs the handler as a quick sub-routine, then resumes.

There are several kind of events; entering/exiting a function, timer expiration, session termination, etc.
A handler is a series of script language statements that specify the work to be done whenever the
event occurs. This work normally includes extracting data from the event context, storing them into
internal variables, and printing results.

3.1. Architecture

A SystemTap session begins when you run a SystemTap script. This session occurs in the following
fashion:

Procedure 3.1. SystemTap Session

1. First, SystemTap checks the script against the existing tapset library (normally in 
/usr/share/systemtap/tapset/ for any tapsets used. SystemTap will then substitute any
located tapsets with their corresponding definitions in the tapset library.

2. SystemTap then translates the script to C, running the system C compiler to create a kernel
module from it. The tools that perform this step are contained in the systemtap package
(refer to Section 2.1.1, “ Installing SystemTap”  for more information).

3. SystemTap loads the module, then enables all the probes (events and handlers) in the script.
The staprun in the systemtap-runtime package (refer to Section 2.1.1, “ Installing
SystemTap”  for more information) provides this functionality.

4. As the events occur, their corresponding handlers are executed.

5. Once the SystemTap session is terminated, the probes are disabled, and the kernel module is
unloaded.

This sequence is driven from a single command-line program: stap. This program is SystemTap's
main front-end tool. For more information about stap, refer to man stap (once SystemTap is
properly installed on your machine).

3.2. SystemTap Scripts

For the most part, SystemTap scripts are the foundation of each SystemTap session. SystemTap
scripts instruct SystemTap on what type of information to collect, and what to do once that
information is collected.

As stated in Chapter 3, Understanding How SystemTap Works, SystemTap scripts are made up of two
components: events and handlers. Once a SystemTap session is underway, SystemTap monitors the
operating system for the specified events and executes the handlers as they occur.

Syst emT ap Beginners Guide
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Note

An event and its corresponding handler is collectively called a probe. A SystemTap script can
have multiple probes.

A probe's handler is commonly referred to as a probe body.

In terms of application development, using events and handlers is similar to instrumenting the code
by inserting diagnostic print statements in a program's sequence of commands. These diagnostic
print statements allow you to view a history of commands executed once the program is run.

SystemTap scripts allow insertion of the instrumentation code without recompilation of the code and
allows more flexibility with regard to handlers. Events serve as the triggers for handlers to run;
handlers can be specified to record specified data and print it in a certain manner.

Format

SystemTap scripts use the file extension .stp, and contains probes written in the following format:

probe event {statements}

SystemTap supports multiple events per probe; multiple events are delimited by a comma (,). If
multiple events are specified in a single probe, SystemTap will execute the handler when any of the
specified events occur.

Each probe has a corresponding statement block. This statement block is enclosed in braces ({ })
and contains the statements to be executed per event. SystemTap executes these statements in
sequence; special separators or terminators are generally not necessary between multiple
statements.

Note

Statement blocks in SystemTap scripts follow the same syntax and semantics as the C
programming language. A statement block can be nested within another statement block.

Systemtap allows you to write functions to factor out code to be used by a number of probes. Thus,
rather than repeatedly writing the same series of statements in multiple probes, you can just place the
instructions in a function, as in:

function function_name(arguments) {statements}
probe event {function_name(arguments)}

The statements in function_name are executed when the probe for event executes. The arguments are
optional values passed into the function.

⁠Chapt er 3. Underst anding How Syst emT ap Works
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Important

Section 3.2, “SystemTap Scripts”  is designed to introduce readers to the basics of SystemTap
scripts. To understand SystemTap scripts better, it is advisable that you refer to Chapter 4,
Useful SystemTap Scripts; each section therein provides a detailed explanation of the script, its
events, handlers, and expected output.

3.2.1. Event

SystemTap events can be broadly classified into two types: synchronous and asynchronous.

Synchronous Events

A synchronous event occurs when any process executes an instruction at a particular location in
kernel code. This gives other events a reference point from which more contextual data may be
available.

Examples of synchronous events include:

syscall.system_call

The entry to the system call system_call. If the exit from a syscall is desired, appending a 
.return to the event monitor the exit of the system call instead. For example, to specify the
entry and exit of the system call close, use syscall.close and 
syscall.close.return respectively.

vfs.file_operation

The entry to the file_operation event for Virtual File System (VFS). Similar to syscall  event,
appending a .return to the event monitors the exit of the file_operation operation.

kernel.funct ion("function")

The entry to the kernel function function. For example, kernel.function("sys_open")
refers to the "event"  that occurs when the kernel function sys_open is called by any thread
in the system. To specify the return of the kernel function sys_open, append the return
string to the event statement; i.e. kernel.function("sys_open").return.

When defining probe events, you can use asterisk (*) for wildcards. You can also trace the
entry or exit of a function in a kernel source file. Consider the following example:

Example 3.1. wildcards.stp

probe kernel.function("*@net/socket.c") { }
probe kernel.function("*@net/socket.c").return { }

In the previous example, the first probe's event specifies the entry of ALL functions in the
kernel source file net/socket.c. The second probe specifies the exit of all those
functions. Note that in this example, there are no statements in the handler; as such, no
information will be collected or displayed.

kernel.t race("tracepoint")

The static probe for tracepoint. Recent kernels (2.6.30 and newer) include instrumentation
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for specific events in the kernel. These events are statically marked with tracepoints. One
example of a tracepoint available in systemtap is kernel.trace("kfree_skb") which
indicates each time a network buffer is freed in the kernel.

module("module") .funct ion("function")

Allows you to probe functions within modules. For example:

Example 3.2. moduleprobe.stp

probe module("ext3").function("*") { }
probe module("ext3").function("*").return { }

The first probe in Example 3.2, “moduleprobe.stp”  points to the entry of all functions for the 
ext3 module. The second probe points to the exits of all functions for that same module; the
use of the .return suffix is similar to kernel.function(). Note that the probes in
Example 3.2, “moduleprobe.stp”  do not contain statements in the probe handlers, and as
such will not print any useful data (as in Example 3.1, “wildcards.stp” ).

A system's kernel modules are typically located in /lib/modules/kernel_version,
where kernel_version refers to the currently loaded kernel version. Modules use the file name
extension .ko .

Asynchronous Events

Asynchronous events are not tied to a particular instruction or location in code. This family of probe
points consists mainly of counters, timers, and similar constructs.

Examples of asynchronous events include:

begin

The startup of a SystemTap session; i.e. as soon as the SystemTap script is run.

end

The end of a SystemTap session.

t imer events

An event that specifies a handler to be executed periodically. For example:

Example 3.3. t imer-s.stp

probe timer.s(4)
{
  printf("hello world\n")
}

Example 3.3, “ timer-s.stp”  is an example of a probe that prints hello world  every 4
seconds. Note that you can also use the following timer events:

timer.ms(milliseconds)
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timer.us(microseconds)

timer.ns(nanoseconds)

timer.hz(hertz)

timer.jiffies(jiffies)

When used in conjunction with other probes that collect information, timer events allows
you to print out get periodic updates and see how that information changes over time.

Important

SystemTap supports the use of a large collection of probe events. For more information about
supported events, refer to man stapprobes. The SEE ALSO section of man stapprobes also
contains links to other man pages that discuss supported events for specific subsystems and
components.

3.2.2. Systemtap Handler/Body

Consider the following sample script:

Example 3.4 . helloworld .stp

probe begin
{
  printf ("hello world\n")
  exit ()
}

In Example 3.4, “helloworld.stp” , the event begin (i.e. the start of the session) triggers the handler
enclosed in { }, which simply prints hello world  followed by a new-line, then exits.

Note

SystemTap scripts continue to run until the exit() function executes. If the users wants to
stop the execution of the script, it can interrupted manually with Ctrl+C .

print f  (  )  Statements

The printf () statement is one of the simplest functions for printing data. printf () can also be
used to display data using a wide variety of SystemTap functions in the following format:

  printf ("format string\n", arguments)

Syst emT ap Beginners Guide

14



The format string specifies how arguments should be printed. The format string of Example 3.4,
“helloworld.stp”  simply instructs SystemTap to print hello world , and contains no format
specifiers.

You can use the format specifiers %s (for strings) and %d  (for numbers) in format strings, depending
on your list of arguments. Format strings can have multiple format specifiers, each matching a
corresponding argument; multiple arguments are delimited by a comma (,).

Note

Semantically, the SystemTap printf function is very similar to its C language counterpart.
The aforementioned syntax and format for SystemTap's printf function is identical to that of
the C-style printf.

To illustrate this, consider the following probe example:

Example 3.5. variab les- in -print f -statements.stp

probe syscall.open
{
  printf ("%s(%d) open\n", execname(), pid())
}

Example 3.5, “ variables-in-printf-statements.stp”  instructs SystemTap to probe all entries to the
system call open; for each event, it prints the current execname() (a string with the executable
name) and pid() (the current process ID number), followed by the word open. A snippet of this
probe's output would look like:

vmware-guestd(2206) open
hald(2360) open
hald(2360) open
hald(2360) open
df(3433) open
df(3433) open
df(3433) open
hald(2360) open

SystemTap Funct ions

SystemTap supports a wide variety of functions that can be used as printf () arguments.
Example 3.5, “ variables-in-printf-statements.stp”  uses the SystemTap functions execname() (name
of the process that called a kernel function/performed a system call) and pid() (current process ID).

The following is a list of commonly-used SystemTap functions:

t id ( )

The ID of the current thread.
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uid( )

The ID of the current user.

cpu( )

The current CPU number.

get t imeofday_s( )

The number of seconds since UNIX epoch (January 1, 1970).

ct ime( )

Convert number of seconds since UNIX epoch to date.

pp( )

A string describing the probe point currently being handled.

thread_indent ( )

This particular function is quite useful, providing you with a way to better organize your
print results. The function takes one argument, an indentation delta, which indicates how
many spaces to add or remove from a thread's " indentation counter" . It then returns a string
with some generic trace data along with an appropriate number of indentation spaces.

The generic data included in the returned string includes a timestamp (number of
microseconds since the first call to thread_indent() by the thread), a process name,
and the thread ID. This allows you to identify what functions were called, who called them,
and the duration of each function call.

If call entries and exits immediately precede each other, it is easy to match them. However, in
most cases, after a first function call entry is made several other call entries and exits may
be made before the first call exits. The indentation counter helps you match an entry with its
corresponding exit by indenting the next function call if it is not the exit of the previous one.

Consider the following example on the use of thread_indent():

Example 3.6 . thread_indent .stp

probe kernel.function("*@net/socket.c") 
{
  printf ("%s -> %s\n", thread_indent(1), probefunc())
}
probe kernel.function("*@net/socket.c").return 
{
  printf ("%s <- %s\n", thread_indent(-1), probefunc())
}

Example 3.6, “ thread_indent.stp”  prints out the thread_indent() and probe functions at
each event in the following format:

0 ftp(7223): -> sys_socketcall
1159 ftp(7223):  -> sys_socket
2173 ftp(7223):   -> __sock_create
2286 ftp(7223):    -> sock_alloc_inode

Syst emT ap Beginners Guide

16



2737 ftp(7223):    <- sock_alloc_inode
3349 ftp(7223):    -> sock_alloc
3389 ftp(7223):    <- sock_alloc
3417 ftp(7223):   <- __sock_create
4117 ftp(7223):   -> sock_create
4160 ftp(7223):   <- sock_create
4301 ftp(7223):   -> sock_map_fd
4644 ftp(7223):    -> sock_map_file
4699 ftp(7223):    <- sock_map_file
4715 ftp(7223):   <- sock_map_fd
4732 ftp(7223):  <- sys_socket
4775 ftp(7223): <- sys_socketcall

This sample output contains the following information:

The time (in microseconds) since the initial thread_indent() call for the thread
(included in the string from thread_indent()).

The process name (and its corresponding ID) that made the function call (included in
the string from thread_indent()).

An arrow signifying whether the call was an entry (<-) or an exit (->); the indentations
help you match specific function call entries with their corresponding exits.

The name of the function called by the process.

name

Identifies the name of a specific system call. This variable can only be used in probes that
use the event syscall.system_call.

target ( )

Used in conjunction with stap script -x process ID or stap script -c command.
If you want to specify a script to take an argument of a process ID or command, use 
target() as the variable in the script to refer to it. For example:

Example 3.7. targetexample.stp

probe syscall.* {
  if (pid() == target())
    printf("%s/n", name)
}

When Example 3.7, “ targetexample.stp”  is run with the argument -x process ID, it
watches all system calls (as specified by the event syscall.*) and prints out the name of
all system calls made by the specified process.

This has the same effect as specifying if (pid() == process ID) each time you wish
to target a specific process. However, using target() makes it easier for you to re-use the
script, giving you the ability to simply pass a process ID as an argument each time you
wish to run the script (e.g. stap targetexample.stp -x process ID).

For more information about supported SystemTap functions, refer to man stapfuncs.

3.3. Basic SystemTap Handler Const ructs
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3.3. Basic SystemTap Handler Const ructs

SystemTap supports the use of several basic constructs in handlers. The syntax for most of these
handler constructs are mostly based on C and awk syntax. This section describes several of the most
useful SystemTap handler constructs, which should provide you with enough information to write
simple yet useful SystemTap scripts.

3.3.1. Variables

Variables can be used freely throughout a handler; simply choose a name, assign a value from a
function or expression to it, and use it in an expression. SystemTap automatically identifies whether
a variable should be typed as a string or integer, based on the type of the values assigned to it. For
instance, if you use set the variable foo  to gettimeofday_s() (as in foo = 
gettimeofday_s()), then foo  is typed as a number and can be printed in a printf() with the
integer format specifier (%d ).

Note, however, that by default variables are only local to the probe they are used in. This means that
variables are initialized, used and disposed at each probe handler invocation. To share a variable
between probes, declare the variable name using global  outside of the probes. Consider the
following example:

Example 3.8. t imer- jif f ies.stp

global count_jiffies, count_ms
probe timer.jiffies(100) { count_jiffies ++ }
probe timer.ms(100) { count_ms ++ }
probe timer.ms(12345)
{
  hz=(1000*count_jiffies) / count_ms
  printf ("jiffies:ms ratio %d:%d => CONFIG_HZ=%d\n",
    count_jiffies, count_ms, hz)
  exit ()
}

Example 3.8, “ timer-jiffies.stp”  computes the CONFIG_HZ setting of the kernel using timers that count
jiffies and milliseconds, then computing accordingly. The global  statement allows the script to use
the variables count_jiffies and count_ms (set in their own respective probes) to be shared with 
probe timer.ms(12345).

Note

The ++  notation in Example 3.8, “ timer-jiffies.stp”  (i.e. count_jiffies ++  and count_ms 
++ ) is used to increment the value of a variable by 1. In the following probe, count_jiffies
is incremented by 1 every 100 jiffies:

probe timer.jiffies(100) { count_jiffies ++ }

In this instance, SystemTap understands that count_jiffies is an integer. Because no
initial value was assigned to count_jiffies, its initial value is zero by default.
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3.3.2. Condit ional Statements

In some cases, the output of a SystemTap script may be too big. To address this, you need to further
refine the script's logic in order to delimit the output into something more relevant or useful to your
probe.

You can do this by using conditionals in handlers. SystemTap accepts the following types of
conditional statements:

If /Else Statements

Format:

if (condition)
  statement1
else
  statement2

The statement1 is executed if the condition expression is non-zero. The statement2
is executed if the condition expression is zero. The else clause (else statement2) is
optional. Both statement1 and statement2 can be statement blocks.

Example 3.9 . ifelse.stp

global countread, countnonread
probe kernel.function("vfs_read"),kernel.function("vfs_write")
{
  if (probefunc()=="vfs_read") 
    countread ++ 
  else 
    countnonread ++
}
probe timer.s(5) { exit() }
probe end 
{
  printf("VFS reads total %d\n VFS writes total %d\n", 
countread, countnonread)
}

Example 3.9, “ ifelse.stp”  is a script that counts how many virtual file system reads
(vfs_read ) and writes (vfs_write) the system performs within a 5-second span. When
run, the script increments the value of the variable countread  by 1 if the name of the
function it probed matches vfs_read  (as noted by the condition if 
(probefunc()=="vfs_read")); otherwise, it increments countnonread  (else 
{countnonread ++}).

While Loops

Format:

while (condition)
  statement
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So long as condition is non-zero the block of statements in statement are executed.
The statement is often a statement block and it must change a value so condition will
eventually be zero.

For Loops

Format:

for (initialization; conditional; increment) statement

The for loop is simply shorthand for a while loop. The following is the equivalent while
loop:

initialization
while (conditional) {
   statement
   increment
}

Condit ional Operators

Aside from ==  (" is equal to"), you can also use the following operators in your conditional
statements:

>=

Greater than or equal to

<=

Less than or equal to

!=

Is not equal to

3.3.3. Command-Line Arguments

You can also allow a SystemTap script to accept simple command-line arguments using a $ or @
immediately followed by the number of the argument on the command line. Use $ if you are expecting
the user to enter an integer as a command-line argument, and @  if you are expecting a string.

Example 3.10. commandlineargs.stp

probe kernel.function(@1) { }
probe kernel.function(@1).return { }

Example 3.10, “ commandlineargs.stp”  is similar to Example 3.1, “wildcards.stp” , except that it allows
you to pass the kernel function to be probed as a command-line argument (as in stap 
commandlineargs.stp kernel function). You can also specify the script to accept multiple
command-line arguments, noting them as @1, @2, and so on, in the order they are entered by the
user.

3.4 . Associat ive Arrays
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3.4 . Associat ive Arrays

SystemTap also supports the use of associative arrays. While an ordinary variable represents a
single value, associative arrays can represent a collection of values. Simply put, an associative
array is a collection of unique keys; each key in the array has a value associated with it.

Since associative arrays are normally processed in multiple probes (as we will demonstrate later),
they should be declared as global  variables in the SystemTap script. The syntax for accessing an
element in an associative array is similar to that of awk, and is as follows:

array_name[index_expression]

Here, the array_name is any arbitrary name the array uses. The index_expression is used to
refer to a specific unique key in the array. To illustrate, let us try to build an array named foo  that
specifies the ages of three people (i.e. the unique keys): tom, dick, and harry. To assign them the
ages (i.e. associated values) of 23, 24, and 25 respectively, we'd use the following array statements:

Example 3.11. Basic Array Statements

foo["tom"] = 23
foo["dick"] = 24
foo["harry"] = 25

You can specify up to nine index expressons in an array statement, each one delimited by a comma
(,). This is useful if you wish to have a key that contains multiple pieces of information. The following
line from disktop.stp uses 5 elements for the key: process ID, executable name, user ID, parent
process ID, and string "W". It associates the value of devname with that key.

device[pid(),execname(),uid(),ppid(),"W"] = devname

Important

All associate arrays must be declared as global , regardless of whether the associate array
is used in one or multiple probes.

3.5. Array Operat ions in SystemTap

This section enumerates some of the most commonly used array operations in SystemTap.

3.5.1. Assigning an Associated Value

Use =  to set an associated value to indexed unique pairs, as in:

array_name[index_expression] = value

Example 3.11, “Basic Array Statements”  shows a very basic example of how to set an explicit
associated value to a unique key. You can also use a handler function as both your 
index_expression and value. For example, you can use arrays to set a timestamp as the
associated value to a process name (which you wish to use as your unique key), as in:
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Example 3.12. Associat ing T imestamps to  Process Names

foo[tid()] = gettimeofday_s()

Whenever an event invokes the statement in Example 3.12, “Associating Timestamps to Process
Names” , SystemTap returns the appropriate tid() value (i.e. the ID of a thread, which is then used
as the unique key). At the same time, SystemTap also uses the function gettimeofday_s() to set
the corresponding timestamp as the associated value to the unique key defined by the function 
tid(). This creates an array composed of key pairs containing thread IDs and timestamps.

In this same example, if tid() returns a value that is already defined in the array foo , the operator
will discard the original associated value to it, and replace it with the current timestamp from 
gettimeofday_s().

3.5.2. Reading Values From Arrays

You can also read values from an array the same way you would read the value of a variable. To do
so, include the array_name[index_expression] statement as an element in a mathematical
expression. For example:

Example 3.13. Using Array Values in  Simple Computat ions

delta = gettimeofday_s() - foo[tid()]

This example assumes that the array foo  was built using the construct in Example 3.12,
“Associating Timestamps to Process Names”  (from Section 3.5.1, “Assigning an Associated Value” ).
This sets a timestamp that will serve as a reference point, to be used in computing for delta.

The construct in Example 3.13, “Using Array Values in Simple Computations”  computes a value for
the variable delta by subtracting the associated value of the key tid() from the current 
gettimeofday_s(). The construct does this by reading the value of tid() from the array. This
particular construct is useful for determining the time between two events, such as the start and
completion of a read operation.

Note

If the index_expression cannot find the unique key, it returns a value of 0 (for numerical
operations, such as Example 3.13, “Using Array Values in Simple Computations” ) or a
null/empty string value (for string operations) by default.

3.5.3. Increment ing Associated Values

Use ++  to increment the associated value of a unique key in an array, as in:

array_name[index_expression] ++

Again, you can also use a handler function for your index_expression. For example, if you
wanted to tally how many times a specific process performed a read to the virtual file system (using
the event vfs.read ), you can use the following probe:

Syst emT ap Beginners Guide

22



Example 3.14 . vfsreads.stp

probe vfs.read
{
  reads[execname()] ++
}

In Example 3.14, “ vfsreads.stp” , the first time that the probe returns the process name gnome-
terminal  (i.e. the first time gnome-terminal  performs a VFS read), that process name is set as the
unique key gnome-terminal  with an associated value of 1. The next time that the probe returns the
process name gnome-terminal , SystemTap increments the associated value of gnome-terminal
by 1. SystemTap performs this operation for all process names as the probe returns them.

3.5.4 . Processing Mult iple Elements in an Array

Once you've collected enough information in an array, you will need to retrieve and process all
elements in that array to make it useful. Consider Example 3.14, “ vfsreads.stp” : the script collects
information about how many VFS reads each process performs, but does not specify what to do with
it. The obvious means for making Example 3.14, “ vfsreads.stp”  useful is to print the key pairs in the
array reads, but how?

The best way to process all key pairs in an array (as an iteration) is to use the foreach statement.
Consider the following example:

Example 3.15. cumulat ive-vfsreads.stp

global reads
probe vfs.read
{ 
  reads[execname()] ++
}
probe timer.s(3)
{
  foreach (count in reads)
    printf("%s : %d \n", count, reads[count])
}

In the second probe of Example 3.15, “ cumulative-vfsreads.stp” , the foreach statement uses the
variable count to reference each iteration of a unique key in the array reads. The reads[count]
array statement in the same probe retrieves the associated value of each unique key.

Given what we know about the first probe in Example 3.15, “ cumulative-vfsreads.stp” , the script prints
VFS-read statistics every 3 seconds, displaying names of processes that performed a VFS-read
along with a corresponding VFS-read count.

Now, remember that the foreach statement in Example 3.15, “ cumulative-vfsreads.stp”  prints all
iterations of process names in the array, and in no particular order. You can instruct the script to
process the iterations in a particular order by using +  (ascending) or - (descending). In addition,
you can also limit the number of iterations the script needs to process with the limit value option.

For example, consider the following replacement probe:

probe timer.s(3)
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{
  foreach (count in reads- limit 10)
    printf("%s : %d \n", count, reads[count])
}

This foreach statement instructs the script to process the elements in the array reads in
descending order (of associated value). The limit 10  option instructs the foreach to only
process the first ten iterations (i.e. print the first 10, starting with the highest value).

3.5.5. Clearing/Delet ing Arrays and Array Elements

Sometimes, you may need to clear the associated values in array elements, or reset an entire array
for re-use in another probe. Example 3.15, “ cumulative-vfsreads.stp”  in Section 3.5.4, “Processing
Multiple Elements in an Array”  allows you to track how the number of VFS reads per process grows
over time, but it does not show you the number of VFS reads each process makes per 3-second
period.

To do that, you will need to clear the values accumulated by the array. You can accomplish this
using the delete operator to delete elements in an array, or an entire array. Consider the following
example:

Example 3.16 . noncumulat ive-vfsreads.stp

global reads
probe vfs.read
{ 
  reads[execname()] ++
}
probe timer.s(3)
{
  foreach (count in reads)
    printf("%s : %d \n", count, reads[count])
  delete reads 
}

In Example 3.16, “noncumulative-vfsreads.stp” , the second probe prints the number of VFS reads
each process made within the probed 3-second period only. The delete reads statement clears the 
reads array within the probe.
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Note

You can have multiple array operations within the same probe. Using the examples from
Section 3.5.4, “Processing Multiple Elements in an Array”  and Section 3.5.5,
“Clearing/Deleting Arrays and Array Elements”  , you can track the number of VFS reads each
process makes per 3-second period and tally the cumulative VFS reads of those same
processes. Consider the following example:

global reads, totalreads

probe vfs.read
{
  reads[execname()] ++
  totalreads[execname()] ++
}

probe timer.s(3)
{
  printf("=======\n")
  foreach (count in reads-) 
    printf("%s : %d \n", count, reads[count])
  delete reads
}

probe end
{
  printf("TOTALS\n")
  foreach (total in totalreads-)
    printf("%s : %d \n", total, totalreads[total])
}

In this example, the arrays reads and totalreads track the same information, and are
printed out in a similar fashion. The only difference here is that reads is cleared every 3-
second period, whereas totalreads keeps growing.

3.5.6. Using Arrays in Condit ional Statements

You can also use associative arrays in if statements. This is useful if you want to execute a
subroutine once a value in the array matches a certain condition. Consider the following example:

Example 3.17. vfsreads-print - if -1kb.stp

global reads
probe vfs.read
{
  reads[execname()] ++
}

probe timer.s(3)
{
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  printf("=======\n")
  foreach (count in reads-)
    if (reads[count] >= 1024)
      printf("%s : %dkB \n", count, reads[count]/1024)
    else
      printf("%s : %dB \n", count, reads[count])
}

Every three seconds, Example 3.17, “ vfsreads-print-if-1kb.stp”  prints out a list of all processes, along
with how many times each process performed a VFS read. If the associated value of a process name
is equal or greater than 1024, the if statement in the script converts and prints it out in kB.

Test ing for Membership

You can also test whether a specific unique key is a member of an array. Further, membership in an
array can be used in if statements, as in:

if([index_expression] in array_name) statement

To illustrate this, consider the following example:

Example 3.18. vfsreads-stop-on-stapio2.stp

global reads

probe vfs.read
{
  reads[execname()] ++
}

probe timer.s(3)
{
  printf("=======\n")
  foreach (count in reads+) 
    printf("%s : %d \n", count, reads[count])
  if(["stapio"] in reads) {
    printf("stapio read detected, exiting\n")
    exit()
  }
}

The if(["stapio"] in reads) statement instructs the script to print stapio read detected, 
exiting  once the unique key stapio  is added to the array reads.

3.5.7. Comput ing for Stat ist ical Aggregates

Statistical aggregates are used to collect statistics on numerical values where it is important to
accumulate new data quickly and in large volume (i.e. storing only aggregated stream statistics).
Statistical aggregates can be used in global variables or as elements in an array.

To add value to a statistical aggregate, use the operator <<< value.

Syst emT ap Beginners Guide

26



Example 3.19 . stat -aggregates.stp

global reads 
probe vfs.read
{
  reads[execname()] <<< count
}

In Example 3.19, “ stat-aggregates.stp” , the operator <<< count stores the amount returned by 
count to the associated value of the corresponding execname() in the reads array. Remember,
these values are stored; they are not added to the associated values of each unique key, nor are they
used to replace the current associated values. In a manner of speaking, think of it as having each
unique key (execname()) having multiple associated values, accumulating with each probe handler
run.

Note

In the context of Example 3.19, “ stat-aggregates.stp” , count returns the amount of data written
by the returned execname() to the virtual file system.

To extract data collected by statistical aggregates, use the syntax format 
@extractor(variable/array index expression). extractor can be any of the following
integer extractors:

count

Returns the number of all values stored into the variable/array index expression. Given the
sample probe in Example 3.19, “ stat-aggregates.stp” , the expression 
@count(writes[execname()]) will return how many values are stored in each unique key
in array writes.

sum

Returns the sum of all values stored into the variable/array index expression. Again, given
sample probe in Example 3.19, “ stat-aggregates.stp” , the expression 
@sum(writes[execname()]) will return the total of all values stored in each unique key in
array writes.

min

Returns the smallest among all the values stored in the variable/array index expression.

max

Returns the largest among all the values stored in the variable/array index expression.

avg

Returns the average of all values stored in the variable/array index expression.

When using statistical aggregates, you can also build array constructs that use multiple index
expressions (to a maximum of 5). This is helpful in capturing additional contextual information
during a probe. For example:
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Example 3.20. Mult ip le Array Indexes

global reads
probe vfs.read
{
  reads[execname(),pid()] <<< 1
}
probe timer.s(3)
{
  foreach([var1,var2] in reads)
    printf("%s (%d) : %d \n", var1, var2, @count(reads[var1,var2]))
}

In Example 3.20, “Multiple Array Indexes” , the first probe tracks how many times each process
performs a VFS read. What makes this different from earlier examples is that this array associates a
performed read to both a process name and its corresponding process ID.

The second probe in Example 3.20, “Multiple Array Indexes”  demonstrates how to process and print
the information collected by the array reads. Note how the foreach statement uses the same
number of variables (i.e. var1 and var2) contained in the first instance of the array reads from the
first probe.

3.6. Tapsets

Tapsets are scripts that form a library of pre-written probes and functions to be used in SystemTap
scripts. When a user runs a SystemTap script, SystemTap checks the script's probe events and
handlers against the tapset library; SystemTap then loads the corresponding probes and functions
before translating the script to C (refer to Section 3.1, “Architecture”  for information on what
transpires in a SystemTap session).

Like SystemTap scripts, tapsets use the file name extension .stp. The standard library of tapsets is
located in /usr/share/systemtap/tapset/ by default. However, unlike SystemTap scripts,
tapsets are not meant for direct execution; rather, they constitute the library from which other scripts
can pull definitions.

Simply put, the tapset library is an abstraction layer designed to make it easier for users to define
events and functions. In a manner of speaking, tapsets provide useful aliases for functions that users
may want to specify as an event; knowing the proper alias to use is, for the most part, easier than
remembering specific kernel functions that might vary between kernel versions.

Several handlers and functions in Section 3.2.1, “Event”  and SystemTap Functions are defined in
tapsets. For example, thread_indent() is defined in indent.stp.
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Chapter 4. Useful SystemTap Scripts

This chapter enumerates several SystemTap scripts you can use to monitor and investigate different
subsystems. All of these scripts are available at 
/usr/share/systemtap/testsuite/systemtap.examples/ once you install the systemtap-
testsuite RPM.

4.1. Network

The following sections showcase scripts that trace network-related functions and build a profile of
network activity.

4 .1.1. Network Profiling

This section describes how to profile network activity. nettop.stp provides a glimpse into how much
network traffic each process is generating on a machine.

net top.stp

#! /usr/bin/env stap

global ifxmit, ifrecv
global ifmerged

probe netdev.transmit
{
  ifxmit[pid(), dev_name, execname(), uid()] <<< length
}

probe netdev.receive
{
  ifrecv[pid(), dev_name, execname(), uid()] <<< length
}

function print_activity()
{
  printf("%5s %5s %-7s %7s %7s %7s %7s %-15s\n",
         "PID", "UID", "DEV", "XMIT_PK", "RECV_PK",
         "XMIT_KB", "RECV_KB", "COMMAND")

  foreach ([pid, dev, exec, uid] in ifrecv) {
   ifmerged[pid, dev, exec, uid] += @count(ifrecv[pid,dev,exec,uid]);
  }
  foreach ([pid, dev, exec, uid] in ifxmit) {
   ifmerged[pid, dev, exec, uid] += @count(ifxmit[pid,dev,exec,uid]);
  }
  foreach ([pid, dev, exec, uid] in ifmerged-) {
    n_xmit = @count(ifxmit[pid, dev, exec, uid])
    n_recv = @count(ifrecv[pid, dev, exec, uid])
    printf("%5d %5d %-7s %7d %7d %7d %7d %-15s\n",
           pid, uid, dev, n_xmit, n_recv,
           n_xmit ? @sum(ifxmit[pid, dev, exec, uid])/1024 : 0,
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           n_recv ? @sum(ifrecv[pid, dev, exec, uid])/1024 : 0,
           exec)
  }

  print("\n")

  delete ifxmit
  delete ifrecv
  delete ifmerged
}

probe timer.ms(5000), end, error
{
  print_activity()
}

Note that function print_activity() uses the following expressions:

n_xmit ? @sum(ifxmit[pid, dev, exec, uid])/1024 : 0
n_recv ? @sum(ifrecv[pid, dev, exec, uid])/1024 : 0

These expressions are if/else conditionals. The first statement is simply a more concise way of writing
the following psuedo code:

if n_recv != 0 then
  @sum(ifrecv[pid, dev, exec, uid])/1024
else
  0

nettop.stp tracks which processes are generating network traffic on the system, and provides the
following information about each process:

PID  — the ID of the listed process.

UID  — user ID. A user ID of 0  refers to the root user.

DEV — which ethernet device the process used to send / receive data (e.g. eth0, eth1)

XMIT_PK — number of packets transmitted by the process

RECV_PK — number of packets received by the process

XMIT_KB — amount of data sent by the process, in kilobytes

RECV_KB — amount of data received by the service, in kilobytes

nettop.stp provides network profile sampling every 5 seconds. You can change this setting by editing
probe timer.ms(5000) accordingly. Example 4.1, “nettop.stp Sample Output”  contains an
excerpt of the output from nettop.stp over a 20-second period:

Example 4 .1. net top.stp  Sample Output

[...]
  PID   UID DEV     XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND        
    0     0 eth0          0       5       0       0 swapper        
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11178     0 eth0          2       0       0       0 synergyc       

  PID   UID DEV     XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND        
 2886     4 eth0         79       0       5       0 cups-polld     
11362     0 eth0          0      61       0       5 firefox        
    0     0 eth0          3      32       0       3 swapper        
 2886     4 lo            4       4       0       0 cups-polld     
11178     0 eth0          3       0       0       0 synergyc       

  PID   UID DEV     XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND        
    0     0 eth0          0       6       0       0 swapper        
 2886     4 lo            2       2       0       0 cups-polld     
11178     0 eth0          3       0       0       0 synergyc       
 3611     0 eth0          0       1       0       0 Xorg           

  PID   UID DEV     XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND        
    0     0 eth0          3      42       0       2 swapper        
11178     0 eth0         43       1       3       0 synergyc       
11362     0 eth0          0       7       0       0 firefox        
 3897     0 eth0          0       1       0       0 multiload-apple
[...]

4 .1.2. T racing Funct ions Called in Network Socket  Code

This section describes how to trace functions called from the kernel's net/socket.c file. This task
helps you identify, in finer detail, how each process interacts with the network at the kernel level.

socket - t race.stp

#!/usr/bin/stap

probe kernel.function("*@net/socket.c").call {
  printf ("%s -> %s\n", thread_indent(1), probefunc())
}
probe kernel.function("*@net/socket.c").return {
  printf ("%s <- %s\n", thread_indent(-1), probefunc())
}

socket-trace.stp is identical to Example 3.6, “ thread_indent.stp” , which was earlier used in
SystemTap Functions to illustrate how thread_indent() works.

Example 4 .2. socket - t race.stp  Sample Output

[...]
0 Xorg(3611): -> sock_poll
3 Xorg(3611): <- sock_poll
0 Xorg(3611): -> sock_poll
3 Xorg(3611): <- sock_poll
0 gnome-terminal(11106): -> sock_poll
5 gnome-terminal(11106): <- sock_poll
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0 scim-bridge(3883): -> sock_poll
3 scim-bridge(3883): <- sock_poll
0 scim-bridge(3883): -> sys_socketcall
4 scim-bridge(3883):  -> sys_recv
8 scim-bridge(3883):   -> sys_recvfrom
12 scim-bridge(3883):-> sock_from_file
16 scim-bridge(3883):<- sock_from_file
20 scim-bridge(3883):-> sock_recvmsg
24 scim-bridge(3883):<- sock_recvmsg
28 scim-bridge(3883):   <- sys_recvfrom
31 scim-bridge(3883):  <- sys_recv
35 scim-bridge(3883): <- sys_socketcall
[...]

Example 4.2, “ socket-trace.stp Sample Output”  contains a 3-second excerpt of the output for socket-
trace.stp. For more information about the output of this script as provided by thread_indent(),
refer to SystemTap Functions Example 3.6, “ thread_indent.stp” .

4 .1.3. Monitoring Incoming T CP Connect ions

This section illustrates how to monitor incoming TCP connections. This task is useful in identifying
any unauthorized, suspicious, or otherwise unwanted network access requests in real time.

tcp_connect ions.stp

#! /usr/bin/env stap

probe begin {
  printf("%6s %16s %6s %6s %16s\n",
         "UID", "CMD", "PID", "PORT", "IP_SOURCE")
}

probe kernel.function("tcp_accept").return?,
      kernel.function("inet_csk_accept").return? {
  sock = $return
  if (sock != 0)
    printf("%6d %16s %6d %6d %16s\n", uid(), execname(), pid(),
           inet_get_local_port(sock), inet_get_ip_source(sock))
}

While tcp_connections.stp is running, it will print out the following information about any incoming
TCP connections accepted by the system in real time:

Current UID

CMD  - the command accepting the connection

PID  of the command

Port used by the connection

IP address from which the TCP connection originated
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Example 4 .3. tcp_connect ions.stp  Sample Output

UID            CMD    PID   PORT        IP_SOURCE
0             sshd   3165     22      10.64.0.227
0             sshd   3165     22      10.64.0.227

4 .1.4 . Monitoring Network Packets Drops in Kernel

The network stack in Linux can discard packets for various reasons. Some Linux kernels include a
tracepoint, kernel.trace("kfree_skb"), which easily tracks where packets are discarded.
dropwatch.stp uses kernel.trace("kfree_skb") to trace packet discards; the script summarizes
which locations discard packets every five-second interval.

dropwatch.stp

#!/usr/bin/stap

############################################################
# Dropwatch.stp
# Author: Neil Horman <nhorman@redhat.com>
# An example script to mimic the behavior of the dropwatch utility
# http://fedorahosted.org/dropwatch
############################################################

# Array to hold the list of drop points we find
global locations

# Note when we turn the monitor on and off
probe begin { printf("Monitoring for dropped packets\n") }
probe end { printf("Stopping dropped packet monitor\n") }

# increment a drop counter for every location we drop at
probe kernel.trace("kfree_skb") { locations[$location] <<< 1 }

# Every 5 seconds report our drop locations
probe timer.sec(5)
{
 printf("\n")
 foreach (l in locations-) {
  printf("%d packets dropped at location %p\n",
      @count(locations[l]), l)
 }
 delete locations
}

The kernel.trace("kfree_skb") traces which places in the kernel drop network packets. The 
kernel.trace("kfree_skb") has two arguments: a pointer to the buffer being freed ($skb) and
the location in kernel code the buffer is being freed ($location).
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Running the dropwatch.stp script 15 seconds would result in output similar in Example 4.4,
“dropwatch.stp Sample Output” . The output lists the number of misses for tracepoint address and the
actual address.

Example 4 .4 . dropwatch.stp  Sample Output

Monitoring for dropped packets

51 packets dropped at location 0xffffffff8024cd0f
2 packets dropped at location 0xffffffff8044b472

51 packets dropped at location 0xffffffff8024cd0f
1 packets dropped at location 0xffffffff8044b472

97 packets dropped at location 0xffffffff8024cd0f
1 packets dropped at location 0xffffffff8044b472
Stopping dropped packet monitor

To make the location of packet drops more meaningful, refer to the /boot/System.map-`uname -
r` file. This file lists the starting addresses for each function, allowing you to map the addresses in
the output of Example 4.4, “dropwatch.stp Sample Output”  to a specific function name. Given the
following snippet of the /boot/System.map-`uname -r` file, the address 0xffffffff8024cd0f maps
to the function unix_stream_recvmsg  and the address 0xffffffff8044b472 maps to the function 
arp_rcv:

[...]
ffffffff8024c5cd T unlock_new_inode
ffffffff8024c5da t unix_stream_sendmsg
ffffffff8024c920 t unix_stream_recvmsg
ffffffff8024cea1 t udp_v4_lookup_longway
[...]
ffffffff8044addc t arp_process
ffffffff8044b360 t arp_rcv
ffffffff8044b487 t parp_redo
ffffffff8044b48c t arp_solicit
[...]

4.2. Disk

The following sections showcase scripts that monitor disk and I/O activity.

4 .2.1. Summariz ing Disk Read/Write T raffic

This section describes how to identify which processes are performing the heaviest disk reads/writes
to the system.

disktop.stp

#!/usr/bin/stap
#
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# Copyright (C) 2007 Oracle Corp.
#
# Get the status of reading/writing disk every 5 seconds,
# output top ten entries 
#
# This is free software,GNU General Public License (GPL);
# either version 2, or (at your option) any later version.
#
# Usage:
#  ./disktop.stp
#

global io_stat,device
global read_bytes,write_bytes

probe vfs.read.return {
  if ($return>0) {
    if (devname!="N/A") {/*skip read from cache*/
      io_stat[pid(),execname(),uid(),ppid(),"R"] += $return
      device[pid(),execname(),uid(),ppid(),"R"] = devname
      read_bytes += $return
    }
  }
}

probe vfs.write.return {
  if ($return>0) {
    if (devname!="N/A") { /*skip update cache*/
      io_stat[pid(),execname(),uid(),ppid(),"W"] += $return
      device[pid(),execname(),uid(),ppid(),"W"] = devname
      write_bytes += $return
    }
  }
}

probe timer.ms(5000) {
  /* skip non-read/write disk */
  if (read_bytes+write_bytes) {

    printf("\n%-25s, %-8s%4dKb/sec, %-7s%6dKb, %-7s%6dKb\n\n",
           ctime(gettimeofday_s()),
           "Average:", ((read_bytes+write_bytes)/1024)/5,
           "Read:",read_bytes/1024,
           "Write:",write_bytes/1024)

    /* print header */
    printf("%8s %8s %8s %25s %8s %4s %12s\n",
           "UID","PID","PPID","CMD","DEVICE","T","BYTES")
  }
  /* print top ten I/O */
  foreach ([process,cmd,userid,parent,action] in io_stat- limit 10)
    printf("%8d %8d %8d %25s %8s %4s %12d\n",
           userid,process,parent,cmd,
           device[process,cmd,userid,parent,action],
           action,io_stat[process,cmd,userid,parent,action])
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  /* clear data */
  delete io_stat
  delete device
  read_bytes = 0
  write_bytes = 0  
}

probe end{
  delete io_stat
  delete device
  delete read_bytes
  delete write_bytes
}

disktop.stp outputs the top ten processes responsible for the heaviest reads/writes to disk.
Example 4.5, “disktop.stp Sample Output”  displays a sample output for this script, and includes the
following data per listed process:

UID  — user ID. A user ID of 0  refers to the root user.

PID  — the ID of the listed process.

PPID  — the process ID of the listed process's parent process.

CMD  — the name of the listed process.

DEVICE — which storage device the listed process is reading from or writing to.

T  — the type of action performed by the listed process; W refers to write, while R  refers to read.

BYTES — the amount of data read to or written from disk.

The time and date in the output of disktop.stp is returned by the functions ctime() and 
gettimeofday_s(). ctime() derives calendar time in terms of seconds passed since the Unix
epoch (January 1, 1970). gettimeofday_s() counts the actual number of seconds since Unix
epoch, which gives a fairly accurate human-readable timestamp for the output.

In this script, the $return is a local variable that stores the actual number of bytes each process
reads or writes from the virtual file system. $return can only be used in return probes (e.g. 
vfs.read.return and vfs.read.return).

Example 4 .5. d isktop.stp  Sample Output

[...]
Mon Sep 29 03:38:28 2008 , Average:  19Kb/sec, Read: 7Kb, Write: 89Kb

UID      PID     PPID                       CMD   DEVICE    T    BYTES
0    26319    26294                   firefox     sda5    W        
90229
0     2758     2757           pam_timestamp_c     sda5    R         
8064
0     2885        1                     cupsd     sda5    W         
1678

Mon Sep 29 03:38:38 2008 , Average:   1Kb/sec, Read: 7Kb, Write: 1Kb
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UID      PID     PPID                       CMD   DEVICE    T    BYTES
0     2758     2757           pam_timestamp_c     sda5    R         
8064
0     2885        1                     cupsd     sda5    W         
1678

4 .2.2. T racking I/O T ime For Each File Read or Write

This section describes how to monitor the amount of time it takes for each process to read from or
write to any file. This is useful if you wish to determine what files are slow to load on a given system.

io t ime.stp

global start
global entry_io
global fd_io
global time_io

function timestamp:long() {
  return gettimeofday_us() - start
}

function proc:string() {
  return sprintf("%d (%s)", pid(), execname())
}

probe begin {
 start = gettimeofday_us()
}

global filenames
global filehandles
global fileread
global filewrite

probe syscall.open {
  filenames[pid()] = user_string($filename)
} 

probe syscall.open.return {
  if ($return != -1) {
    filehandles[pid(), $return] = filenames[pid()]
    fileread[pid(), $return] = 0
    filewrite[pid(), $return] = 0
  } else {
    printf("%d %s access %s fail\n", timestamp(), proc(), 
filenames[pid()])
  }
  delete filenames[pid()]
}

probe syscall.read {
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  if ($count > 0) {
    fileread[pid(), $fd] += $count
  }
  t = gettimeofday_us(); p = pid()
  entry_io[p] = t
  fd_io[p] = $fd
}

probe syscall.read.return {
  t = gettimeofday_us(); p = pid()
  fd = fd_io[p]
  time_io[p,fd] <<< t - entry_io[p]
}

probe syscall.write {
  if ($count > 0) {
    filewrite[pid(), $fd] += $count
  }
  t = gettimeofday_us(); p = pid()
  entry_io[p] = t
  fd_io[p] = $fd
}

probe syscall.write.return {
  t = gettimeofday_us(); p = pid()
  fd = fd_io[p]
  time_io[p,fd] <<< t - entry_io[p]
}

probe syscall.close {
  if (filehandles[pid(), $fd] != "") {
    printf("%d %s access %s read: %d write: %d\n",  timestamp(), proc(),
           filehandles[pid(), $fd], fileread[pid(), $fd], filewrite[pid(), 
$fd])
    if (@count(time_io[pid(), $fd]))
      printf("%d %s iotime %s time: %d\n",  timestamp(), proc(),
             filehandles[pid(), $fd], @sum(time_io[pid(), $fd]))
   }
  delete fileread[pid(), $fd]
  delete filewrite[pid(), $fd]
  delete filehandles[pid(), $fd]
  delete fd_io[pid()]
  delete entry_io[pid()]
  delete time_io[pid(),$fd]
}

iotime.stp tracks each time a system call opens, closes, reads from, and writes to a file. For each file
any system call accesses, iotime.stp counts the number of microseconds it takes for any reads or
writes to finish and tracks the amount of data (in bytes) read from or written to the file.

iotime.stp also uses the local variable $count to track the amount of data (in bytes) that any system
call attempts to read or write. Note that $return (as used in disktop.stp from Section 4.2.1,
“Summarizing Disk Read/Write Traffic” ) stores the actual amount of data read/written. $count can
only be used on probes that track data reads or writes (e.g. syscall.read  and syscall.write).
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Example 4 .6 . io t ime.stp  Sample Output

[...]
825946 3364 (NetworkManager) access /sys/class/net/eth0/carrier read: 
8190 write: 0
825955 3364 (NetworkManager) iotime /sys/class/net/eth0/carrier time: 9
[...]
117061 2460 (pcscd) access /dev/bus/usb/003/001 read: 43 write: 0
117065 2460 (pcscd) iotime /dev/bus/usb/003/001 time: 7
[...]
3973737 2886 (sendmail) access /proc/loadavg read: 4096 write: 0
3973744 2886 (sendmail) iotime /proc/loadavg time: 11
[...]

Example 4.6, “ iotime.stp Sample Output”  prints out the following data:

A timestamp, in microseconds.

Process ID and process name.

An access or iotime flag.

The file accessed.

If a process was able to read or write any data, a pair of access and iotime lines should appear
together. The access line's timestamp refers to the time that a given process started accessing a file;
at the end of the line, it will show the amount of data read/written (in bytes). The iotime line will
show the amount of time (in microseconds) that the process took in order to perform the read or write.

If an access line is not followed by an iotime line, it simply means that the process did not read or
write any data.

4 .2.3. T rack Cumulat ive IO

This section describes how to track the cumulative amount of I/O to the system.

t raceio .stp

#! /usr/bin/env stap
# traceio.stp
# Copyright (C) 2007 Red Hat, Inc., Eugene Teo <eteo@redhat.com>
# Copyright (C) 2009 Kai Meyer <kai@unixlords.com>
#   Fixed a bug that allows this to run longer
#   And added the humanreadable function
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License version 2 as
# published by the Free Software Foundation.
#

global reads, writes, total_io

probe vfs.read.return {
  reads[pid(),execname()] += $return
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  total_io[pid(),execname()] += $return
}

probe vfs.write.return {
  writes[pid(),execname()] += $return
  total_io[pid(),execname()] += $return
}

function humanreadable(bytes) {
  if (bytes > 1024*1024*1024) {
    return sprintf("%d GiB", bytes/1024/1024/1024)
  } else if (bytes > 1024*1024) {
    return sprintf("%d MiB", bytes/1024/1024)
  } else if (bytes > 1024) {
    return sprintf("%d KiB", bytes/1024)
  } else {
    return sprintf("%d   B", bytes)
  }
}

probe timer.s(1) {
  foreach([p,e] in total_io- limit 10)
    printf("%8d %15s r: %12s w: %12s\n",
           p, e, humanreadable(reads[p,e]),
           humanreadable(writes[p,e]))
  printf("\n")
  # Note we don't zero out reads, writes and total_io,
  # so the values are cumulative since the script started.
}

traceio.stp prints the top ten executables generating I/O traffic over time. In addition, it also tracks the
cumulative amount of I/O reads and writes done by those ten executables. This information is tracked
and printed out in 1-second intervals, and in descending order.

Note that traceio.stp also uses the local variable $return, which is also used by disktop.stp from
Section 4.2.1, “Summarizing Disk Read/Write Traffic” .

Example 4 .7. t raceio .stp  Sample Output

[...]
           Xorg r:   583401 KiB w:        0 KiB
       floaters r:       96 KiB w:     7130 KiB
multiload-apple r:      538 KiB w:      537 KiB
           sshd r:       71 KiB w:       72 KiB
pam_timestamp_c r:      138 KiB w:        0 KiB
        staprun r:       51 KiB w:       51 KiB
          snmpd r:       46 KiB w:        0 KiB
          pcscd r:       28 KiB w:        0 KiB
     irqbalance r:       27 KiB w:        4 KiB
          cupsd r:        4 KiB w:       18 KiB

           Xorg r:   588140 KiB w:        0 KiB
       floaters r:       97 KiB w:     7143 KiB
multiload-apple r:      543 KiB w:      542 KiB
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           sshd r:       72 KiB w:       72 KiB
pam_timestamp_c r:      138 KiB w:        0 KiB
        staprun r:       51 KiB w:       51 KiB
          snmpd r:       46 KiB w:        0 KiB
          pcscd r:       28 KiB w:        0 KiB
     irqbalance r:       27 KiB w:        4 KiB
          cupsd r:        4 KiB w:       18 KiB

4 .2.4 . I/O Monitoring (By Device)

This section describes how to monitor I/O activity on a specific device.

t raceio2.stp

#! /usr/bin/env stap

global device_of_interest

probe begin {
  /* The following is not the most efficient way to do this.
      One could directly put the result of usrdev2kerndev()
      into device_of_interest.  However, want to test out
      the other device functions */
  dev = usrdev2kerndev($1)
  device_of_interest = MKDEV(MAJOR(dev), MINOR(dev))
}

probe vfs.write, vfs.read
{
  if (dev == device_of_interest)
    printf ("%s(%d) %s 0x%x\n",
            execname(), pid(), probefunc(), dev)
}

traceio2.stp takes 1 argument: the whole device number. To get this number, use stat -c "0x%D" 
directory, where directory is located in the device you wish to monitor.

The usrdev2kerndev() function converts the whole device number into the format understood by
the kernel. The output produced by usrdev2kerndev() is used in conjunction with the MKDEV(), 
MINOR(), and MAJOR() functions to determine the major and minor numbers of a specific device.

The output of traceio2.stp includes the name and ID of any process performing a read/write, the
function it is performing (i.e. vfs_read  or vfs_write), and the kernel device number.

The following example is an excerpt from the full output of stap traceio2.stp 0x805, where 
0x805 is the whole device number of /home. /home resides in /dev/sda5, which is the device we
wish to monitor.

Example 4 .8. t raceio2.stp  Sample Output

[...]
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synergyc(3722) vfs_read 0x800005
synergyc(3722) vfs_read 0x800005
cupsd(2889) vfs_write 0x800005
cupsd(2889) vfs_write 0x800005
cupsd(2889) vfs_write 0x800005
[...]

4 .2.5. Monitoring Reads and Writes to a File

This section describes how to monitor reads from and writes to a file in real time.

inodewatch.stp

#! /usr/bin/env stap

probe vfs.write, vfs.read
{
  # dev and ino are defined by vfs.write and vfs.read
  if (dev == MKDEV($1,$2) # major/minor device
      && ino == $3)
    printf ("%s(%d) %s 0x%x/%u\n",
      execname(), pid(), probefunc(), dev, ino)
}

inodewatch.stp takes the following information about the file as arguments on the command line:

The file's major device number.

The file's minor device number.

The file's inode number.

To get this information, use stat -c '%D %i' filename, where filename is an absolute path.

For instance: if you wish to monitor /etc/crontab, run stat -c '%D %i' /etc/crontab first.
This gives the following output:

805 1078319

805 is the base-16 (hexadecimal) device number. The lower two digits are the minor device number
and the upper digits are the major number. 1078319  is the inode number. To start monitoring 
/etc/crontab, run stap inodewatch.stp 0x8 0x05 1078319  (The 0x prefixes indicate
base-16 values).

The output of this command contains the name and ID of any process performing a read/write, the
function it is performing (i.e. vfs_read  or vfs_write), the device number (in hex format), and the 
inode number. Example 4.9, “ inodewatch.stp Sample Output”  contains the output of stap 
inodewatch.stp 0x8 0x05 1078319  (when cat /etc/crontab is executed while the script is
running) :

Example 4 .9 . inodewatch.stp  Sample Output
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cat(16437) vfs_read 0x800005/1078319
cat(16437) vfs_read 0x800005/1078319

4 .2.6. Monitoring Changes to File At t ributes

This section describes how to monitor if any processes are changing the attributes of a targeted file,
in real time.

inodewatch2-simple.stp

global ATTR_MODE = 1​

probe kernel.function("inode_setattr") { ​
  dev_nr = $inode->i_sb->s_dev ​
  inode_nr = $inode->i_ino ​

  if (dev_nr == ($1 << 20 | $2) # major/minor device ​
      && inode_nr == $3 ​
      && $attr->ia_valid & ATTR_MODE) ​
    printf ("%s(%d) %s 0x%x/%u %o %d\n", ​
      execname(), pid(), probefunc(), dev_nr, inode_nr, $attr->ia_mode, 
uid()) ​
} ​

Like inodewatch.stp from Section 4.2.5, “Monitoring Reads and Writes to a File” , inodewatch2-
simple.stp takes the targeted file's device number (in integer format) and inode number as
arguments. For more information on how to retrieve this information, refer to Section 4.2.5,
“Monitoring Reads and Writes to a File” .

The output for inodewatch2-simple.stp is similar to that of inodewatch.stp, except that inodewatch2-
simple.stp also contains the attribute changes to the monitored file, as well as the ID of the user
responsible (uid()). Example 4.10, “ inodewatch2-simple.stp Sample Output”  shows the output of
inodewatch2-simple.stp while monitoring /home/joe/bigfile when user joe executes chmod 
777 /home/joe/bigfile and chmod 666 /home/joe/bigfile.

Example 4 .10. inodewatch2-simple.stp  Sample Output

chmod(17448) inode_setattr 0x800005/6011835 100777 500
chmod(17449) inode_setattr 0x800005/6011835 100666 500

4.3. Profiling

The following sections showcase scripts that profile kernel activity by monitoring function calls.

4 .3.1. Count ing Funct ion Calls Made
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This section describes how to identify how many times the system called a specific kernel function in
a 30-second sample. Depending on your use of wildcards, you can also use this script to target
multiple kernel functions.

funct ioncallcount .stp

#! /usr/bin/env stap
# The following line command will probe all the functions
# in kernel's memory management code:
#
# stap  functioncallcount.stp "*@mm/*.c"

probe kernel.function(@1).call {  # probe functions listed on commandline
  called[probefunc()] <<< 1  # add a count efficiently
}

global called

probe end {
  foreach (fn in called-)  # Sort by call count (in decreasing order)
  #       (fn+ in called)  # Sort by function name
    printf("%s %d\n", fn, @count(called[fn]))
  exit()
}

functioncallcount.stp takes the targeted kernel function as an argument. The argument supports
wildcards, which enables you to target multiple kernel functions up to a certain extent.

The output of functioncallcount.stp contains the name of the function called and how many times it
was called during the sample time (in alphabetical order). Example 4.11, “ functioncallcount.stp
Sample Output”  contains an excerpt from the output of stap functioncallcount.stp 
"*@mm/*.c":

Example 4 .11. funct ioncallcount .stp  Sample Output

[...]
__vma_link 97
__vma_link_file 66
__vma_link_list 97
__vma_link_rb 97
__xchg 103
add_page_to_active_list 102
add_page_to_inactive_list 19
add_to_page_cache 19
add_to_page_cache_lru 7
all_vm_events 6
alloc_pages_node 4630
alloc_slabmgmt 67
anon_vma_alloc 62
anon_vma_free 62
anon_vma_lock 66
anon_vma_prepare 98
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anon_vma_unlink 97
anon_vma_unlock 66
arch_get_unmapped_area_topdown 94
arch_get_unmapped_exec_area 3
arch_unmap_area_topdown 97
atomic_add 2
atomic_add_negative 97
atomic_dec_and_test 5153
atomic_inc 470
atomic_inc_and_test 1
[...]

4 .3.2. Call Graph T racing

This section describes how to trace incoming and outgoing function calls.

para-callgraph.stp

#! /usr/bin/env stap

function trace(entry_p, extra) {
  %( $# > 1 %? if (tid() in trace) %)
  printf("%s%s%s %s\n",
         thread_indent (entry_p),
         (entry_p>0?"->":"<-"),
         probefunc (),
         extra)
}

%( $# > 1 %?
global trace
probe $2.call {
  trace[tid()] = 1
}
probe $2.return {
  delete trace[tid()]
}
%)

probe $1.call   { trace(1, $$parms) }
probe $1.return { trace(-1, $$return) }

para-callgraph.stp takes two command-line arguments:

The function(s) whose entry/exit you'd like to trace ($1).

A second optional trigger function ($2), which enables or disables tracing on a per-thread basis.
Tracing in each thread will continue as long as the trigger function has not exited yet.
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para-callgraph.stp uses thread_indent(); as such, its output contains the timestamp, process
name, and thread ID of $1 (i.e. the probe function you are tracing). For more information about 
thread_indent(), refer to its entry in SystemTap Functions.

The following example contains an excerpt from the output for stap para-callgraph.stp 
'kernel.function("*@fs/*.c")' 'kernel.function("sys_read")' :

Example 4 .12. para-callgraph.stp  Sample Output

[...]
   267 gnome-terminal(2921): <-do_sync_read return=0xfffffffffffffff5
   269 gnome-terminal(2921):<-vfs_read return=0xfffffffffffffff5
     0 gnome-terminal(2921):->fput file=0xffff880111eebbc0
     2 gnome-terminal(2921):<-fput 
     0 gnome-terminal(2921):->fget_light fd=0x3 
fput_needed=0xffff88010544df54
     3 gnome-terminal(2921):<-fget_light return=0xffff8801116ce980
     0 gnome-terminal(2921):->vfs_read file=0xffff8801116ce980 
buf=0xc86504 count=0x1000 pos=0xffff88010544df48
     4 gnome-terminal(2921): ->rw_verify_area read_write=0x0 
file=0xffff8801116ce980 ppos=0xffff88010544df48 count=0x1000
     7 gnome-terminal(2921): <-rw_verify_area return=0x1000
    12 gnome-terminal(2921): ->do_sync_read filp=0xffff8801116ce980 
buf=0xc86504 len=0x1000 ppos=0xffff88010544df48
    15 gnome-terminal(2921): <-do_sync_read return=0xfffffffffffffff5
    18 gnome-terminal(2921):<-vfs_read return=0xfffffffffffffff5
     0 gnome-terminal(2921):->fput file=0xffff8801116ce980

4 .3.3. Determining T ime Spent  in Kernel and User Space

This section illustrates how to determine the amount of time any given thread is spending in either
kernel or user-space.

thread- t imes.stp

#! /usr/bin/env stap

probe perf.sw.cpu_clock!, timer.profile {
  // NB: To avoid contention on SMP machines, no global scalars/arrays 
used,
  // only contention-free statistics aggregates.
  tid=tid(); e=execname()
  if (!user_mode())
    kticks[e,tid] <<< 1
  else
    uticks[e,tid] <<< 1
  ticks <<< 1
  tids[e,tid] <<< 1
}

global uticks, kticks, ticks
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global tids

probe timer.s(5), end {
  allticks = @count(ticks)
  printf ("%16s %5s %7s %7s (of %d ticks)\n",
          "comm", "tid", "%user", "%kernel", allticks)
  foreach ([e,tid] in tids- limit 20) {
    uscaled = @count(uticks[e,tid])*10000/allticks
    kscaled = @count(kticks[e,tid])*10000/allticks
    printf ("%16s %5d %3d.%02d%% %3d.%02d%%\n",
      e, tid, uscaled/100, uscaled%100, kscaled/100, kscaled%100)
  }
  printf("\n")

  delete uticks
  delete kticks
  delete ticks
  delete tids
}

thread-times.stp lists the top 20 processes currently taking up CPU time within a 5-second sample,
along with the total number of CPU ticks made during the sample. The output of this script also notes
the percentage of CPU time each process used, as well as whether that time was spent in kernel
space or user space.

Example 4.13, “ thread-times.stp Sample Output”  contains a 5-second sample of the output for
thread-times.stp:

Example 4 .13. thread- t imes.stp  Sample Output

  tid   %user %kernel (of 20002 ticks)
    0   0.00%  87.88%
32169   5.24%   0.03%
 9815   3.33%   0.36%
 9859   0.95%   0.00%
 3611   0.56%   0.12%
 9861   0.62%   0.01%
11106   0.37%   0.02%
32167   0.08%   0.08%
 3897   0.01%   0.08%
 3800   0.03%   0.00%
 2886   0.02%   0.00%
 3243   0.00%   0.01%
 3862   0.01%   0.00%
 3782   0.00%   0.00%
21767   0.00%   0.00%
 2522   0.00%   0.00%
 3883   0.00%   0.00%
 3775   0.00%   0.00%
 3943   0.00%   0.00%
 3873   0.00%   0.00%
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4 .3.4 . Monitoring Polling Applicat ions

This section describes how to identify and monitor which applications are polling. Doing so allows
you to track unnecessary or excessive polling, which can help you pinpoint areas for improvement in
terms of CPU usage and power savings.

t imeout .stp

#! /usr/bin/env stap
# Copyright (C) 2009 Red Hat, Inc.
# Written by Ulrich Drepper <drepper@redhat.com>
# Modified by William Cohen <wcohen@redhat.com>

global process, timeout_count, to
global poll_timeout, epoll_timeout, select_timeout, itimer_timeout
global nanosleep_timeout, futex_timeout, signal_timeout

probe syscall.poll, syscall.epoll_wait {
  if (timeout) to[pid()]=timeout
}

probe syscall.poll.return {
  p = pid()
  if ($return == 0 && to[p] > 0 ) {
    poll_timeout[p]++
    timeout_count[p]++
    process[p] = execname()
    delete to[p]
  }
}

probe syscall.epoll_wait.return {
  p = pid()
  if ($return == 0 && to[p] > 0 ) {
    epoll_timeout[p]++
    timeout_count[p]++
    process[p] = execname()
    delete to[p]
  }
}

probe syscall.select.return {
  if ($return == 0) {
    p = pid()
    select_timeout[p]++
    timeout_count[p]++
    process[p] = execname()
  }
}

probe syscall.futex.return {
  if (errno_str($return) == "ETIMEDOUT") {
    p = pid()
    futex_timeout[p]++
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    timeout_count[p]++
    process[p] = execname()
  }
}

probe syscall.nanosleep.return {
  if ($return == 0) {
    p = pid()
    nanosleep_timeout[p]++
    timeout_count[p]++
    process[p] = execname()
  }
}

probe kernel.function("it_real_fn") {
  p = pid()
  itimer_timeout[p]++
  timeout_count[p]++
  process[p] = execname()
}

probe syscall.rt_sigtimedwait.return {
  if (errno_str($return) == "EAGAIN") {
    p = pid()
    signal_timeout[p]++
    timeout_count[p]++
    process[p] = execname()
  }
}

probe syscall.exit {
  p = pid()
  if (p in process) {
    delete process[p]
    delete timeout_count[p]
    delete poll_timeout[p]
    delete epoll_timeout[p]
    delete select_timeout[p]
    delete itimer_timeout[p]
    delete futex_timeout[p]
    delete nanosleep_timeout[p]
    delete signal_timeout[p]
  }
}

probe timer.s(1) {
  ansi_clear_screen()
  printf ("  pid |   poll  select   epoll  itimer   futex nanosle  
signal| process\n")
  foreach (p in timeout_count- limit 20) {
     printf ("%5d |%7d %7d %7d %7d %7d %7d %7d| %-.38s\n", p,
              poll_timeout[p], select_timeout[p],
              epoll_timeout[p], itimer_timeout[p],
              futex_timeout[p], nanosleep_timeout[p],
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              signal_timeout[p], process[p])
  }
}

timeout.stp tracks how many times each application used the following system calls over time:

poll

select

epoll

itimer

futex

nanosleep

signal

In some applications, these system calls are used excessively. As such, they are normally identified
as " likely culprits"  for polling applications. Note, however, that an application may be using a
different system call to poll excessively; sometimes, it is useful to find out the top system calls used by
the system (refer to Section 4.3.5, “Tracking Most Frequently Used System Calls”  for instructions).
Doing so can help you identify any additional suspects, which you can add to timeout.stp for
tracking.

Example 4 .14 . t imeout .stp  Sample Output

  uid |   poll  select   epoll  itimer   futex nanosle  signal| process
28937 | 148793       0       0    4727   37288       0       0| firefox
22945 |      0   56949       0       1       0       0       0| scim-
bridge
    0 |      0       0       0   36414       0       0       0| 
swapper
 4275 |  23140       0       0       1       0       0       0| 
mixer_applet2
 4191 |      0   14405       0       0       0       0       0| scim-
launcher
22941 |   7908       1       0      62       0       0       0| gnome-
terminal
 4261 |      0       0       0       2       0    7622       0| escd
 3695 |      0       0       0       0       0    7622       0| gdm-
binary
 3483 |      0    7206       0       0       0       0       0| dhcdbd
 4189 |   6916       0       0       2       0       0       0| scim-
panel-gtk
 1863 |   5767       0       0       0       0       0       0| iscsid
 2562 |      0    2881       0       1       0    1438       0| pcscd
 4257 |   4255       0       0       1       0       0       0| gnome-
power-man
 4278 |   3876       0       0      60       0       0       0| 
multiload-apple
 4083 |      0    1331       0    1728       0       0       0| Xorg
 3921 |   1603       0       0       0       0       0       0| 
gam_server
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 4248 |   1591       0       0       0       0       0       0| nm-
applet
 3165 |      0    1441       0       0       0       0       0| xterm
29548 |      0    1440       0       0       0       0       0| httpd
 1862 |      0       0       0       0       0    1438       0| iscsid

You can increase the sample time by editing the timer in the second probe (timer.s()). The output
of functioncallcount.stp contains the name and UID of the top 20 polling applications, along with
how many times each application performed each polling system call (over time). Example 4.14,
“ timeout.stp Sample Output”  contains an excerpt of the script:

4 .3.5. T racking Most  Frequent ly Used System Calls

timeout.stp from Section 4.3.4, “Monitoring Polling Applications”  helps you identify which
applications are polling by pointing out which ones used the following system calls most frequently:

poll

select

epoll

itimer

futex

nanosleep

signal

However, in some systems, a different system call might be responsible for excessive polling. If you
suspect that a polling application is using a different system call to poll, you need to identify first the
top system calls used by the system. To do this, use topsys.stp.

topsys.stp

#! /usr/bin/env stap
#
# This script continuously lists the top 20 systemcalls in the interval 
# 5 seconds
#

global syscalls_count

probe syscall.* {
  syscalls_count[name]++
}

function print_systop () {
  printf ("%25s %10s\n", "SYSCALL", "COUNT")
  foreach (syscall in syscalls_count- limit 20) {
    printf("%25s %10d\n", syscall, syscalls_count[syscall])
  }
  delete syscalls_count
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}

probe timer.s(5) {
  print_systop ()
  printf("--------------------------------------------------------------
\n")
}

topsys.stp lists the top 20 system calls used by the system per 5-second interval. It also lists how
many times each system call was used during that period. Refer to Example 4.15, “ topsys.stp Sample
Output”  for a sample output.

Example 4 .15. topsys.stp  Sample Output

--------------------------------------------------------------
                  SYSCALL      COUNT
             gettimeofday       1857
                     read       1821
                    ioctl       1568
                     poll       1033
                    close        638
                     open        503
                   select        455
                    write        391
                   writev        335
                    futex        303
                  recvmsg        251
                   socket        137
            clock_gettime        124
           rt_sigprocmask        121
                   sendto        120
                setitimer        106
                     stat         90
                     time         81
                sigreturn         72
                    fstat         66
--------------------------------------------------------------

4 .3.6. T racking System Call Volume Per Process

This section illustrates how to determine which processes are performing the highest volume of
system calls. In previous sections, we've described how to monitor the top system calls used by the
system over time (Section 4.3.5, “Tracking Most Frequently Used System Calls” ). We've also
described how to identify which applications use a specific set of "polling suspect"  system calls the
most (Section 4.3.4, “Monitoring Polling Applications” ). Monitoring the volume of system calls made
by each process provides more data in investigating your system for polling processes and other
resource hogs.

syscalls_by_proc.stp
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#! /usr/bin/env stap

# Copyright (C) 2006 IBM Corp.
#
# This file is part of systemtap, and is free software.  You can
# redistribute it and/or modify it under the terms of the GNU General
# Public License (GPL); either version 2, or (at your option) any
# later version.

#
# Print the system call count by process name in descending order.
#

global syscalls

probe begin {
  print ("Collecting data... Type Ctrl-C to exit and display results\n")
}

probe syscall.* {
  syscalls[execname()]++
}

probe end {
  printf ("%-10s %-s\n", "#SysCalls", "Process Name")
  foreach (proc in syscalls-)
    printf("%-10d %-s\n", syscalls[proc], proc)
}

syscalls_by_proc.stp lists the top 20 processes performing the highest number of system calls. It also
lists how many system calls each process performed during the time period. Refer to Example 4.16,
“ topsys.stp Sample Output”  for a sample output.

Example 4 .16 . topsys.stp  Sample Output

Collecting data... Type Ctrl-C to exit and display results
#SysCalls  Process Name
1577       multiload-apple
692        synergyc
408        pcscd
376        mixer_applet2
299        gnome-terminal
293        Xorg
206        scim-panel-gtk
95         gnome-power-man
90         artsd
85         dhcdbd
84         scim-bridge
78         gnome-screensav
66         scim-launcher
[...]
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If you prefer the output to display the process IDs instead of the process names, use the following
script instead.

syscalls_by_pid .stp

#! /usr/bin/env stap

# Copyright (C) 2006 IBM Corp.
#
# This file is part of systemtap, and is free software.  You can
# redistribute it and/or modify it under the terms of the GNU General
# Public License (GPL); either version 2, or (at your option) any
# later version.

#
# Print the system call count by process ID in descending order.
#

global syscalls

probe begin {
  print ("Collecting data... Type Ctrl-C to exit and display results\n")
}

probe syscall.* {
  syscalls[pid()]++
}

probe end {
  printf ("%-10s %-s\n", "#SysCalls", "PID")
  foreach (pid in syscalls-)
    printf("%-10d %-d\n", syscalls[pid], pid)
}

As indicated in the output, you need to manually exit the script in order to display the results. You
can add a timed expiration to either script by simply adding a timer.s() probe; for example, to
instruct the script to expire after 5 seconds, add the following probe to the script:

probe timer.s(5)
{
 exit()
}

4.4 . Ident ifying Contended User-Space Locks

This section describes how to identify contended user-space locks throughout the system within a
specific time period. The ability to identify contended user-space locks can help you investigate
hangs that you suspect may be caused by futex contentions.

Simply put, a futex contention occurs when multiple processes are trying to access the same region
of memory. In some cases, this can result in a deadlock between the processes in contention, thereby
appearing as an application hang.
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To do this, futexes.stp probes the futex system call.

fu texes.stp

#! /usr/bin/env stap

# This script tries to identify contended user-space locks by hooking
# into the futex system call.

global thread_thislock # short
global thread_blocktime # 
global FUTEX_WAIT = 0 /*, FUTEX_WAKE = 1 */

global lock_waits # long-lived stats on (tid,lock) blockage elapsed time
global process_names # long-lived pid-to-execname mapping

probe syscall.futex {  
  if (op != FUTEX_WAIT) next # don't care about WAKE event originator
  t = tid ()
  process_names[pid()] = execname()
  thread_thislock[t] = $uaddr
  thread_blocktime[t] = gettimeofday_us()
}

probe syscall.futex.return {  
  t = tid()
  ts = thread_blocktime[t]
  if (ts) {
    elapsed = gettimeofday_us() - ts
    lock_waits[pid(), thread_thislock[t]] <<< elapsed
    delete thread_blocktime[t]
    delete thread_thislock[t]
  }
}

probe end {
  foreach ([pid+, lock] in lock_waits) 
    printf ("%s[%d] lock %p contended %d times, %d avg us\n",
            process_names[pid], pid, lock, @count(lock_waits[pid,lock]),
            @avg(lock_waits[pid,lock]))
}

futexes.stp needs to be manually stopped; upon exit, it prints the following information:

Name and ID of the process responsible for a contention

The region of memory it contested

How many times the region of memory was contended

Average time of contention throughout the probe
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Example 4.17, “ futexes.stp Sample Output”  contains an excerpt from the output of futexes.stp upon
exiting the script (after approximately 20 seconds).

Example 4 .17. fu texes.stp  Sample Output

[...] 
automount[2825] lock 0x00bc7784 contended 18 times, 999931 avg us
synergyc[3686] lock 0x0861e96c contended 192 times, 101991 avg us
synergyc[3758] lock 0x08d98744 contended 192 times, 101990 avg us
synergyc[3938] lock 0x0982a8b4 contended 192 times, 101997 avg us
[...]
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Chapter 5. Understanding SystemTap Errors

This chapter explains the most common errors you may encounter while using SystemTap.

5.1. Parse and Semant ic Errors

These types of errors occur while SystemTap attempts to parse and translate the script into C, prior to
being converted into a kernel module. For example type errors result from operations that assign
invalid values to variables or arrays.

parse error: expected foo,  saw bar

The script contains a grammatical/typographical error. SystemTap detected type of construct that is
incorrect, given the context of the probe.

The following invalid SystemTap script is missing its probe handlers:

probe vfs.read
probe vfs.write

It results in the following error message showing that the parser was expecting something other than
the probe keyword in column 1 of line 2:

parse error: expected one of '. , ( ? ! { = +='
 saw: keyword at perror.stp:2:1
1 parse error(s).

parse error: embedded code in  unprivileged script

The script contains unsafe embedded C code (blocks of code surrounded by %{ %}. SystemTap
allows you to embed C code in a script, which is useful if there are no tapsets to suit your purposes.
However, embedded C constructs are not safe; as such, SystemTap warns you with this error if such
constructs appear in the script.

If you are sure of the safety of any similar constructs in the script and are member of stapdev group
(or have root privileges), run the script in "guru" mode by using the option -g  (i.e. stap -g 
script).

semant ic error: type mismatch for ident if ier ' foo'  . . .  st ring vs. long

The function foo in the script used the wrong type (i.e. %s or %d ). This error will present itself in
Example 5.1, “error-variable.stp” , because the function execname() returns a string the format
specifier should be a %s, not %d .

Example 5.1. error-variab le.stp

probe syscall.open
{
  printf ("%d(%d) open\n", execname(), pid())
}
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semant ic error: unresolved type for ident if ier ' foo'

The identifier (e.g. a variable) was used, but no type (integer or string) could be determined. This
occurs, for instance, if you use a variable in a printf statement while the script never assigns a
value to the variable.

semant ic error: Expect ing symbol or array index expression

SystemTap could not assign a value to a variable or to a location in an array. The destination for the
assignment is not a valid destination. The following example code would generate this error:

probe begin { printf("x") = 1 }

while searching for arity N funct ion, semant ic error: unresolved funct ion call

A function call or array index expression in the script used an invalid number of
arguments/parameters. In SystemTap arity can either refer to the number of indices for an array, or the
number of parameters to a function.

semant ic error: array locals not  supported, missing g lobal declarat ion?

The script used an array operation without declaring the array as a global variable (global variables
can be declared after their use in SystemTap scripts). Similar messages appear if an array is used,
but with inconsistent arities.

semant ic error: variab le ’foo’  modied during ’foreach’ iterat ion

The array foo  is being modifed (being assigned to or deleted from) within an active foreach loop.
This error also displays if an operation within the script performs a function call within the foreach
loop.

semant ic error: probe point  mismatch at  posit ion N,  while resolving probe point  foo

SystemTap did not understand what the event or SystemTap function foo refers to. This usually
means that SystemTap could not find a match for foo in the tapset library. The N refers to the line
and column of the error.

semant ic error: no match for probe point , while resolving probe point  foo

The events/handler function foo could not be resolved altogether, for a variety of reasons. This error
occurs when the script contains the event kernel.function("blah"), and blah does not exist. In
some cases, the error could also mean the script contains an invalid kernel file name or source line
number.

semant ic error: unresolved target -symbol expression

A handler in the script references a target variable, but the value of the variable could not be
resolved. This error could also mean that a handler is referencing a target variable that is not valid in
the context when it was referenced. This may be a result of compiler optimization of the generated
code.

semant ic error: l ibdw failure
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There was a problem processing the debugging information. In most cases, this error results from the
installation of a kernel-debuginfo  RPM whose version does not match the probed kernel exactly.
The installed kernel-debuginfo  RPM itself may have some consistency/correctness problems.

semant ic error: cannot  f ind foo debuginfo

SystemTap could not find a suitable kernel-debuginfo  at all.

5.2. Run T ime Errors and Warnings

Runtime errors and warnings occur when the SystemTap instrumentation has been installed and is
collecting data on the system.

WARNING: Number of  errors: N,  skipped probes: M

Errors and/or skipped probes occurred during this run. Both N and M are the counts of the number of
probes that were not executed due to conditions such as too much time required to execute event
handlers over an interval of time.

division by 0

The script code performed an invalid division.

aggregate element  not  found

A statistics extractor function other than @count was invoked on an aggregate that has not had any
values accumulated yet. This is similar to a division by zero.

aggregat ion overf low

An array containing aggregate values contains too many distinct key pairs at this time.

MAXNESTING exceeded

Too many levels of function call nesting were attempted. The default nesting of function calls allowed
is 10.

MAXACTION exceeded

The probe handler attempted to execute too many statements in the probe handler. The default
number of actions allowed in a probe handler is 1000.

kernel/user st ring copy fault  at  ADDR

The probe handler attempted to copy a string from kernel or user-space at an invalid address
(ADDR).

pointer dereference fault

There was a fault encountered during a pointer dereference operation such as a target variable
evaluation.
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Chapter 6. References

This chapter enumerates other references for more information about SystemTap. It is advisable that
you refer to these sources in the course of writing advanced probes and tapsets.

SystemTap Wiki

The SystemTap Wiki is a collection of links and articles related to the deployment, usage,
and development of SystemTap. You can find it at
http://sourceware.org/systemtap/wiki/HomePage.

SystemTap Tutorial

Much of the content in this book comes from the SystemTap Tutorial. The SystemTap Tutorial
is a more appropriate reference for users with intermediate to advanced knowledge of C++
and kernel development, and can be found at http://sourceware.org/systemtap/tutorial/.

man stapprobes

The stapprobes man page enumerates a variety of probe points supported by SystemTap,
along with additional aliases defined by the SystemTap tapset library. The bottom of the
man page includes a list of other man pages enumerating similar probe points for specific
system components, such as stapprobes.scsi , stapprobes.kprocess, 
stapprobes.signal , etc.

man stapfuncs

The stapfuncs man page enumerates numerous functions supported by the SystemTap
tapset library, along with the prescribed syntax for each one. Note, however, that this is not
a complete list of all supported functions; there are more undocumented functions available.

SystemTap Language Reference

This document is a comprehensive reference of SystemTap's language constructs and
syntax. It is recommended for users with a rudimentary to intermediate knowledge of C++
and other similar programming languages. The SystemTap Language Reference is available
to all users at http://sourceware.org/systemtap/langref/

Tapset  Developers Guide

Once you have sufficient proficiency in writing SystemTap scripts, you can then try your
hand out on writing your own tapsets. The Tapset Developers Guide describes how to add
functions to your tapset library.

Test  Suite

The systemtap-testsuite package allows you to test the entire SystemTap toolchain
without having to build from source. In addition, it also contains numerous examples of
SystemTap scripts you can study and test; some of these scripts are also documented in
Chapter 4, Useful SystemTap Scripts.

By default, the example scripts included in systemtap-testsuite are located in 
/usr/share/systemtap/testsuite/systemtap.examples.
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Appendix A. Revision History

Revision 1-5 Thu Nov 11 2015 Robert  Kratky
Release for Red Hat Enterprise Linux 7.2

Revision 0-4 Fri Dec 6  2013 Jacquelynn East
Updated for Red Hat Enterprise Linux 7.0 Beta

Revision 0-3 Fri Dec 6  2013 Jacquelynn East
Branch for Red Hat Enterprise Linux 7.0
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